yield approximately, and to within an additive factor of 2π ,

$$\phi_{t} = 2\pi \frac{Z_{t}}{Z_{s}} \left(\frac{f}{f_{r}} - \frac{f}{f_{ro}} \right)$$
 (10)

where f is the value of f at zero pressure. Differentiating (10), and evaluating the result at zero pressure gives

$$\frac{\partial \phi_{t}}{\partial P} = -2\pi \frac{Z_{t}}{Z_{s}} \frac{f}{f_{ro}} \frac{\partial \ln f_{r}}{\partial P}$$
(11)

(Although Z_t and Z_s vary with pressure, they produce only a second-order effect.) A convenient expression can be derived for the corresponding correction to the derivative of the appropriate combination of elastic moduli, $M = \rho v^2$. The desired phase derivative is

$$\frac{\partial \phi_{S}}{\partial P} = \frac{\partial \phi_{m}}{\partial P} - \frac{\partial \phi_{t}}{\partial P} \tag{12}$$

where φ_m is the measured phase. The sample phase is $\varphi_S = 4\pi f L/v$, so that $\!\!\!^m$

$$\frac{1}{\phi_S} \frac{\partial \phi_S}{\partial P} = -\frac{1}{2K} \left[\frac{K}{M} \frac{\partial M}{\partial P} - (1 - 2 K \beta) \right]$$
 (13)

where $\beta = -\partial \ln L/\partial P$ is the linear compressibility of the sample. The correction is, using (12),

$$\left[\frac{\partial M}{\partial P}\right]_{COTT} = -\frac{M_V}{2\pi f L} \left(\frac{\partial \phi_L}{\partial P}\right). \tag{14}$$

Now combining (14) with (11)

$$\left[\frac{\partial M}{\partial P}\right]_{\text{corr.}} = \frac{v^2}{L} \left(\frac{z_t}{f_r} \frac{\partial \ln f_r}{\partial P}\right). \tag{15}$$

Thus, apart from the transducer properties, the correction to $\partial M/\partial P$ depends only on the sample velocity and length. Some representative values are given in Table 4, for quartz transducers on MgF $_2$ and spinel. The corrections to the pressure derivatives of the moduli are of the order of 0.1 for compressional waves and -0.05 for shear waves.

TABLE 4. Representative Corrections to Pressure
Derivatives of Elastic Moduli Due to
Transducer Phase Shifts

Mode	v,km/s	L,mm	f _r , Mhz	$(\frac{\partial M}{\partial P})_{\text{corr.}}$	<u>∂M</u> ∂ <i>P</i>
MgF ₂ a					
[001]P	8.01	10.80	20	.069	5.66
[110]P	8.15	10.80	10	.141	8.43
[001]s	4.22	9.64	20	035	0.79
[110]s ^c	2.82	10.80	20	014	-0.68
MgAl ₂ O ₄ b					
[001]P	8.88	10 ^d	20	.091	5.15
[110]P	10.22	10	20	.120	5.85
[001]s	6.57	10	20	082	0.89
[110]s ^c	4.23	10	20	034	0.19

a. Davies [in preparation].

Note that this difference in sign (arising from the opposite signs of the derivatives of the relevant quartz transducer frequencies [Table 3]). causes the corrections for some derived moduli to be compounded. This is most easily seen for an isometric material. If C_S denotes the modulus for a shear wave in the [110] direction, polarized in the [110] direction, then the bulk modulus is $K = C_{11} - 4C_S/3$, and $C_{12} = C_{11} - 2C_S$. The effect is illustrated in Table 5 for spinel (isometric) and MgF₂ (tetragonal).

b. Chang and Barsch [1973].

c. Polarization [110].

d. Assume lengths for spinel.